Motorola's Newest Mission Critical Technology Solves Real Problems for Cities, Municipalities

Multi-Radio, Multi-Frequency Access Points Ensure Public Wi-Fi Users Do Not Compromise First Responder Access to Mission Critical Communications

For years, municipalities across the United States have faced a seemingly insurmountable communications and budgetary problem: How to deploy a single wireless network that provides Wi-Fi access to the public, yet provides first responders with separate, dedicated and secure access to mission critical communications?

Motorola, Inc. today announces the MOTOMESH™ Multi-Radio Broadband Solution, whose architecture supports up to four radio networks in a single access point. Motorola, a world leader in delivering mission-critical communications, said MOTOMESH provides fixed and mobile broadband access to users in the unlicensed 2.4GHz band, as well as in the new licensed 4.9 GHz public safety band. MOTOMESH and Motorola’s expanding portfolio of Seamless Mobility solutions are being showcased this week at the CTIA tradeshows in New Orleans, LA.

“The 4.9 GHz licensed band is seeing increasing application in municipal and public safety applications,” said Craig J. Mathias, a Principal with the Farpoint Group, a mobile and wireless advisory firm based in Ashland, MA. “Combining the 4.9 GHz band with the 2.4 GHz unlicensed band allows municipalities to address the needs of both government and commercial users with a single deployment.”

The MOTOMESH solution, which will be available in the second half of 2005, is one of the first multi-radio mesh networks to combine 4.9 GHz licensed mobile broadband radios and unlicensed Wi-Fi radios into a single access point. This enables truly distinct wireless broadband networks to operate over a common physical infrastructure. Competing mesh solutions rely on “virtual networking,” which means municipal workers, first responders and the public must compete for bandwidth and access on a single physical Wi-Fi network. MOTOMESH allows municipalities to serve diverse communities of interest without the risk of public Wi-Fi users overwhelming mission critical mobile broadband users.

Of primary importance to cities and municipalities across the United States, MOTOMESH offers seamless security, service and connectivity to first responders and other law enforcement personnel. Users of the network can receive instant access to key information like building schematics, electrical diagrams, hazardous chemical reports and other critical information that empowers them to safely and efficiently do their jobs. The network also helps to reduce the time it takes to respond to emergencies, providing valuable seconds that could mean the difference between life and death. In addition, users of the network can leverage its mesh networking properties and seamless connectivity by deploying high-speed instant tactical broadband networks for rapid data communications even in areas where physical infrastructure may be damaged or destroyed.

“Motorola is setting the standard for cities looking to deploy a single network infrastructure that has the ability to serve a wide range of constituencies,” said Nelson Santos, Director of Technology, Scientel America, a leading integrator of metro area wireless networks. “Motorola’s multi-radio architecture offers higher capacity, security and performance than we have seen in other metro broadband systems.”

A Technical View of MOTOMESH

Every MOTOMESH access point contains two standards-based 802.11 (Wi-Fi) radios and two of Motorola’s widely acclaimed Mesh Enabled Architecture (MEA®) mobile broadband radios. One set of Wi-Fi and MEA radios operate in the unlicensed 2.4GHz band, and one set operates in the licensed 4.9GHz public safety band.

MEA radio users can leverage Motorola’s unique Multi-Hopping® capabilities that turn each user into a router/repeater. This allows users to hop through other users to reach MOTOMESH access points. As a result, every user makes the network stronger - extending network coverage and creating more data paths through the network. As with all MEA radio systems, fast and accurate tracking capabilities are available without the use of GPS satellites.

Centralized network management and configuration is provided by Motorola’s proven and widely deployed MeshManager® system. MOTOMESH is currently undergoing beta testing with general availability slated for the second half of 2005.

For more information visit: www.motorola.com

Quixote Transportation Technologies’ Surface Systems, Inc. (SSI®) Releases a New Active Surface Sensor Model

New active surface sensor and control board from SSI, Inc. Surface Systems, Inc. (SSI®), a member of Quixote Transportation Technologies, Inc. and North America’s leading Road/Runway Weather Information Systems (RWIS) provider, recently converted to a new model of its Active Surface Sensor. The new model improves the capabilities of the sensor by increasing its operating temperature range.

The active surface sensor measures freeze point temperature regardless of chemical type or mixture. The sensor will report freeze point values from “4° to +32°F (-20° to 0°C). The standard sensor consists of one controller and two sensor heads. The RWIS software displays one freeze point value that is an average of the data collected from the sensor heads. The sensor uses a Peltier element to cool and warm any moisture/liquid in a well on...
Econolite Introduces Another Traffic Mitigating Solution
The ASC/3 Series of Advanced Traffic Controllers

After extensive research, customer focus group review and development, Econolite proudly introduces the new ASC/3 Series of NEMA TS2 and NTCIP compliant actuated controllers. The ASC/3 controllers are envisioned as the next generation in a line of successful Advanced System Controllers offered by Econolite. Based on the proven experience and feature-set of Econolite’s popular ASC family of controllers, the ASC/3 adds further flexibility and extended functionality through its unique design.

The ASC/3 is available in two distinct models. The ASC/3-1000 model meets and exceeds all requirements of the NEMA TS2 Standard for Type 1 controllers. Whereas, the ASC/3-2100 model meets and exceeds all requirements of the NEMA Standard for TS2 Type 2 controllers with the additional bonus of providing downward compatibility to Econolite’s previous line of KMC-8000, ASC-8000, ASC/2-2100, ASC/2S-2100 and other NEMA TS1 controllers. Both models feature a stylish design, durable and rugged aluminum enclosure, easily serviceable power supply, state-of-the-art processor, environmentally sealed electrometric keyboard, large format/easy to view LCD display and optional data key, telemetry and Ethernet modules. In addition the ASC/3 is fabricated using a process-controlled manufacturing system conforming to the latest ISO 9000:2000 quality standard requirements.

Eric Raamot, Vice President of Engineering remarked, “In addition to the distinct hardware advantages designed into the ASC/3, I am very pleased to see the synthesis of NTCIP1202 mandatory and optional objects with Econolite’s industry-recognized ASC/2 feature-set. This expansive feature-set is enhanced with Econolite’s newest exclusive features that make the ASC/3 our most flexible and powerful controller ever.”

“The ASC/3 feature-set is one of the most advanced in the industry yet it remains as easy to use as its predecessors. Its full support of the NTCIP Actuated Signal Controller Object Standard makes it an easy choice for use with any advanced traffic management system” commented Gary Duncan, Chief Technology Officer.

Econolite is dedicated to using innovative ideas to provide solutions for the transportation industry and the ASC/3 Series of controllers is moving the world one step closer towards safer roads, reduced air pollution, and increased mobility. For more information about the ASC/3 Series of controllers, visit www.econolite.com or contact your local Econolite solution provider.